

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023 Question Paper Log Number P72906A Publications Code WST03_01_MS_2301 All the material in this publication is copyright © Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

<u>'M' marks</u>

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

(i) should have the correct number of terms

(ii) be dimensionally correct i.e. all the terms need to be dimensionally correct

e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

<u>'A' marks</u>

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

<u>'B' marks</u>

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:

If all but one attempt is crossed out, mark the attempt which is NOT crossed out. If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question		Scheme		Marks					
1 (a)(i)	Meth	nod 1	Method 2						
	$\overline{y} =$	$\left[\frac{847}{100}\right] = 8.47$	847+100×1000 [=100847]	M1					
	So \overline{x}	$\overline{E} = 1000 + \frac{847}{100} = 1008.47 *$	$\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47^*$	A1*					
(ii)	$\left[\left[s_x^2 = s_y^2 = \right] \frac{13510.09 - 100 \times "8.47"^2}{99} \right] \left[s_x^2 = \right] \frac{101707510.1 - \frac{"100847"^2}{100}}{99}$								
	= 64								
				(4)					
(b)	H ₀ :	$\mu_x = 1010$ $H_1: \mu_x \neq 1010$		B1					
	V	1010		(1)					
(c)	$\frac{X}{"8"}$	$\frac{1010}{\sqrt{100}} = -1.96$ oe $\frac{x - 1010}{"8"/\sqrt{100}} =$	1.96 oe	M1 B1					
	$\overline{X} =$	1008.432 $\bar{X} = 1011.568$ awr	t 1008 and 1012(or 1011)	A1					
	$\overline{X} \leqslant$	\bar{X} "1008.432" $\bar{X} \ge$ "1011.568"		A1ft					
				(4)					
(d)	1008	3.47 is not in the critical region		M1					
	The	machine does not need to be stoppe	d /reset	Alft					
(e)	Itici	reasonable since the sample size is	(reasonably) large	(2) R1					
(0)	It is reasonable since the sample size is (reasonably) large								
1				(1)					
			Notes	(1) Total 12					
(a)(i)	M1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100$	Notes 000 or 847 = $\sum x - 100 \times 1000$ or 100847 seen	(1) Total 12					
(a)(i)	M1 A1*	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 1$ cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii)	M1 A1* M1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii)	M1 A1* M1 A1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii) (b)	M1 A1* M1 A1 B1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 1$ cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$)	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii) (b)	M1 A1* M1 A1 B1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$)	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii) (b)	M1 A1* M1 A1 B1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$	(1) Total 12 Fer to x not					
(a)(i) (ii) (b) (c)	M1 A1* M1 A1 B1 M1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100 \times 100 \times 100 \times 100 \times 1000 \times 10000 \times 1000 \times 1000 \times 10000 \times 100000 \times 100000 \times 100000 \times 100000 \times 100000000$	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X}	(1) Total 12 Fer to <i>x</i> not					
(a)(i) (ii) (b) (c)	M1 A1* M1 A1 B1 M1 B1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca a one tail hypotheses in (b)	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if t	(1) Total 12 Fer to x not hey have					
(a)(i) (ii) (b) (c)	M1 A1* M1 A1 B1 M1 B1 A1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 100 \times 100$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calca a one tail hypotheses in (b) For both limits 1008 or better and 10	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if the set of the	(1) Total 12 Fer to x not hey have (3)					
(a)(i) (ii) (b) (c)	M1 A1* M1 A1 B1 M1 B1 A1 A1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 1$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calc a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if the set of π is the set of π of π or π is the set of π or π or π or π is the set of π or π o	(1) Total 12 Fer to x not hey have () () () () () () () () () ()					
(a)(i) (ii) (b) (c) (d)	M1 A1* M1 A1 B1 M1 B1 A1 A1 A1 M1 A1 A1 A1 M1 A1	For 8.47 or $\frac{847}{100}$ or $\frac{847}{100} \times 12$ cso correct solution including $\overline{x} =$ <i>y</i> and must not be just <i>x</i> eg E(<i>X</i>), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = ± 1.96 or better seen (Calc a one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow n Allow writing in the form "1008.432 ends. If no clear CR it is M0A0	Notes 000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must ref , mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd Allow equivalent eg $1010 \pm n \times "8"/\sqrt{100}$ or for \overline{X} culator gives 1.95996) Condone 1.6449 or better if the set of π is a set of π or π	(1) Total 12 Fer to x not hey have (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7					

	SC	If the CR in (c) is of the form "1008.432" $< \overline{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B1	Any suitable comment about the sample being large $eg n$ is large

Ouestion			S	Scheme							Marks
	Ath	ete	A	B	С	D	E	F	G	Н	
2(a)	Ran	k SBT	4	2	1	3	5	6	8	7	M1
- (u)	FP		1	2	3	4	5	6	7	8	
	$\sum d^2$	$e^2 = 9 + 0 + 4 + 1 - 1$	+0+0+	1+1 [=	16]						M1
	$r_s = 1 - \frac{6("16")}{8(63)} = 0.8095$ awrt 0.8								awrt 0.81	dM1 A1	
											(4)
(b)	$H_0: \rho$	$\rho = 0$, $H_1: \rho > 0$									B1
	Critic	al Value $r_s = 0$.	8333 or	$CR: r_s$	≥ 0.83	33					B1
	Do no	ot reject H_0 or no	ot signif	icant or	does not	lie in th	e critica	l region	or there	is no	M1
	evide	nce of a positive	e correla	tion	1.4	1 4		• • •	4•	10 11	
	There	ts no evidence	of a pos lotos	itive col	rrelation	i betwee	in seaso	n's best	time and	d finishing	A1ft
	positi	ion for these ath	10105								(4)
		0.225175									
(c)	r = -	0.1286875×0.5	55275								M1
	= 0.	84428								awrt 0.844	A1
											(2)
(d)	Critic	al Value $r = 0.7$	7887 or	CR: <i>r</i>	≥ 0.788	37					M1
	so the	ere is evidence o	f a posi	tive cor	relation	between	season	's best t	ime and	finishing	Δ1 ft
	time	for these athlete	S								
											(2)
()	244		1	1		es Communitation		. 1	1 .	-1^2 10	10tal 12
(a)	MI	attempt to rank	seasonal	best time	e (at least	Tour con	rect), Ma	y be imp	hed by Z	a = 10	— 2
	M1	Attempt to find	the diffe	rence bet	ween eac	ch of the I	r anks (a	it least 3 o	correct) a	nd evaluation	ng $\sum d^2$
		May be implied	by awrt	0.81 NB	if no ran	ks for SB	T it is M	0			
	dM1	dependent on 1 ^s	^t M1. Us	ing 1 – 6	$\frac{5\sum d^2}{8(63)}$ w	vith their	$\sum d^2$				
	A1	$\frac{17}{21}$ or awrt 0.8	31(0)								
		for reverse rank	ings								
	SC	May score M1N	11dM1A	0 order 5	786	4 3 1 2	$\sum d^2 = 1$	58			
(b)	D1	both hypotheses	correct.	Must be	in terms	of ρ (allo	w somet	hing that	looks lik	e rho eg p).	Must be
(0)	DI	attached to H ₀ a	nd H ₁								
	B1	critical value of	0.8333	Sign sl	hould ma	tch there	H_1 or r_s				
	M1	correct statemer	nt compa	ring their	CV with	their r_s	- no con	text need	led but do	o not allow	
	NI I	contradicting no	on contex	tual com	ments. If	no CV o	r test stat	tistic give	en or the	test value o	or $ CV > 1$
	$r_{\rm e}$ correct conclusion in context for their value of $r_{\rm e}$ from (a) and their stated CV. Conclusion m								n must refer		
1	Alft	concet conclusi	оп ш соі	icone ioi .			· · · / · · ·				
		to positive corr	elation,	<u>seasona</u> l	best or t	ime and	position.				
	SC	to positive corr For use of two-t	elation, ailed tes	seasonal t:	best or t	ime and j	position.				
	SC	to positive corr For use of two-t May score B0B	elation, ailed tes 1M1A0	seasonal t: CV allov	best or t	ime and j	position.				
(c)	SC M1	to positive corr For use of two-t May score B0B correct method	elation, ailed tes 1M1A0 used	seasonal t: CV allov	best or t	ime and j	position.				
(c)	SC M1 A1 M1	to positive corr For use of two-t May score B0B correct method awrt 0.844	elation, ailed tes 1M1A0 used	seasonal t: CV allow	best or t	ime and j	position.	tailed in	(b)		

	M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to
	A1ft positive correlation, seasonal best or time and finishing time. Do not allow contradicting comments.
	if the test value or $ CV > 1$ then it is M0

Question	Scheme								
2(a)	$\frac{86 \times 300}{1114 \times 300}$ or $\frac{1114 \times 300}{1114 \times 300}$								
5 (a)	120	$\frac{1}{100}$ 01 $\frac{1}{100}$	200			101 1			
	21.5 a	and 278.5				A1			
(b)	H ₀ : Making a claim and age are independent (not associated)								
(0)	$H_1: M$	laking a claim ar	nd age are not indepe	endent (associated)	7	DI			
		Observed Expected $\frac{(O-E)^2}{E}$							
	14 "21.5" $\frac{(14 - "21.5")^2}{"21.5"} = 2.6162$								
		286	"278.5"	$\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$					
	$\sum \frac{1}{2}$	$\frac{(O-E)^2}{E} = 7.123 + 100$	"2.616"+ "0.2019	."		M1			
	=	9.941		av	vrt 9.94	A1			
	v = (2	(2-1)(3-1) = 2				B1			
	$\chi^{2}_{2}(0.$	$(01) = 9.210 \implies C$	R: $X^2 \ge 9.21[0]$			B1ft			
	[in the	e CR/significant	(Reject H_0) There is	s sufficient evidence to suggest that m	aking a	dA1ft			
	Claim	i is not independ				(7)			
			Ň	Notes		Total 9			
(a)	M1	A correct metho	d for finding one expe	ected value. Implied by one correct value.					
	A1	Correct answer f	for both 21.5 and 278.	5					
(b)	B1	For both hypothe "correlation" or	eses correct. Must mer "connection" is B0	ntion claim and age at least once. Use of '	"relations	hip" or			
	M1	A correct metho	d for finding both con	tributions to the χ^2 value or awrt 2.62 or	awrt 0.20	2 Allow			
	MII	truncated answer	rs of 2.61 and 0.201 N	May be implied by awrt 9.94					
		Adding their two	values to 7.123 (may	be implied by a full γ^2 calculation, with	h at least :	3 correct			
	MI	expressions or v	alues. Do not ISW)	1 2 70 7					
	A1	awrt 9.94	,						
	B1	v = 2 This mark	can be implied by a c	correct critical value of 9.21 or better					
	B1ft	9.21[0] or better	ft their Degrees of fre	eedom common ones $v = 3$ is 11.345					
	dA1ft Independent of hypotheses but dependent on both M marks being awarded. We will ft the statistic and CV only. A correct contextual conclusion compatible with their values, which words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/								
Full calcul	ations	for(b)							
(24-1-	$(4.33)^2$	$(176 - 185.67)^2$	$(48-50.17)^2$ (6	$(552 - 649.83)^2 + (14 - "21.5")^2 + (286)$	-"278.5	") ²			
leg <u>14.</u>	33	185.67	50.17	649.83 + 21.5 +	278.5				
or awrt 6	5.52 + a	wrt 0.5+awrt 0.	09+awrt 0.01+awr	t 2.62+0.20					
2 <i>t</i> ²	1?	402	2 142 60	-2					
or $\frac{24^2}{$	$+\frac{176^2}{176^2}$	$-+\frac{48^{2}}{-+}+\frac{652}{-+}$	$\frac{14^2}{2} + \frac{14^2}{286} + \frac{286}{2}$	$\frac{5^{2}}{1200}$ - 1200					
14.33	185.6	7 50.17 649.	83 "21.50" "278	3.5"					
or awrt 4	0.19 + a	awrt 166.83 + awr	t 45.92 + awrt 654.17	+ awrt 9.116 + awrt 293.702 - 1200					

Quest	ion	n Scheme					
4 (a	a)	H_0 : B(4, 0.5) is a suitable model					
		H_1 : B(4, 0.5) is not a suitable model	BI				
		Expected frequencies 12.5, 50, 75, 50, 12.5	M1 A1				
		$\sum (Q-E)^2 (15-"12.5")^2 (10-"12.5")^2$					
		$\sum \frac{1}{E} = \frac{1}{12.5"} + \dots + \frac{1}{12.5"}$	2.61				
		$rac{D}{2}$ 12.5 12.5	MI				
		or $\sum \frac{10}{E} - N = \frac{10}{12.5"} + \dots + \frac{10}{12.5"} - 200$					
		= 10.84 (or 10.8)	A1				
		v = 4	B1				
		$\chi_4^2(0.05) = 9.488 \Rightarrow CR \ge 9.488$	B1				
		Sufficient evidence to say that the research students claim is not supported	A1ft				
			(8)				
(b)	$[0 \times 15 +]1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10[= 360]$	M1				
		$\frac{360}{360} = 0.45$ *	A1*				
		200×4					
(0)	<u>`</u>		(2)				
(0))	H_0 : Binomial is a suitable model	B1				
		H_1 : Binomial is not a suitable model	D 1				
	_	V = 3	BI				
	_	$\chi_3^{-1}(0.05) = 7.815 \implies CR \ge 7.815$	Blft				
		No significant evidence to say that the binomial is not a reasonable model					
1			(4)				
		Notes	(4) Total 14				
(a)	B1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	(4) Total 14				
(a)	B1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or	(4) Total 14				
(a)	B1 M1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8	(4) Total 14				
(a)	B1 M1 A1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.	(4) Total 14				
(a)	B1 M1 A1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee	(4) Total 14 ded)				
(a)	B1 M1 A1 M1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	(4) Total 14 ded)				
(a)	B1 M1 A1 M1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8	(4) Total 14 ded)				
(a)	B1 M1 A1 M1 A1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.810.84 Allow 10.8	ded)				
(a)	B1 M1 A1 M1 A1 B1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.810.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488	(4) Total 14 ded)				
(a)	B1 M1 A1 M1 A1 B1 B1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.810.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.4889.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815	(4) Total 14 ded)				
(a)	B1 M1 A1 M1 A1 B1 B1	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.810.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.4889.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar	(4) Total 14 ded) ded)				
(a)	B1 M1 A1 M1 A1 B1 B1 A1f	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability (<i>p</i>) = 0.5 and a reference to 4 children or <i>n</i> = 4) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (ded)				
(a)	B1 M1 A1 M1 A1 B1 B1 A1f	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial).	ded)				
(a)	B1 M1 A1 M1 A1 B1 B1 A1f	NotesBoth hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8For all 5 expected frequencies correct. These must be seen and cannot be implied.For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.810.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.4889.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct.	(4) Total 14 ded) ded) ded) n their test Allow in n must say mial)				
(a)	B1 M1 A1 M1 B1 B1 A1f M1	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8	ded)				
(a)	B1 M1 A1 M1 B1 B1 A1f M1 A1* R1	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability (<i>p</i>) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct.	(4) Total 14 ded) ded) ded) nd their test Allow in n must say mial)				
(a)	B1 M1 A1 M1 A1 B1 B1 A1f M1 A1* B1 B1	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability (<i>p</i>) = 0.5 and a reference to 4 children or <i>n</i> = 4) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include – 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B(6) v = 3 This mark can be implied by a correct critical value of 7.815 Condone (their <i>v</i> in part(a) –	(4) Total 14 ded) ded) ded) (0.45,4) (0.45,4) (1)				
(a)	B1 M1 A1 M1 B1 B1 M1 A1* B1 B1 B1 ff	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability (<i>p</i>) = 0.5 and a reference to 4 children or <i>n</i> = 4) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include - 200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. It their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B(v = 3 This mark can be implied by a correct critical value of 7.815 Condone (their <i>v</i> in part(a) – 7.815 ft their degrees of freedom if they have (their <i>v</i> in part(a) – 1)	(4) Total 14 ded) ded) ded)				
(a)	B1 M1 A1 M1 A1 B1 B1 B1 B1 B1 B1 B1 B1	Notes Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability (p) = 0.5 and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 v = 4 This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2 nd M1. independent of hypotheses. Need claim or student or binomial. ft their CV ar statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binor A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B($v = 3$ This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) – 7.815 ft their CV only. Independent of hypotheses. A correct conclusion based on awrt 2.47 and their	(4) Total 14 (4) Total 14 (4)				

Questio	on	Scheme	Marks					
5 (a)	, ,	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B$	R1					
J (a)		$H_1: \mu_A > \mu_B$ oe						
		$17.8^2 + 18.4^2$	M1					
	$se = \sqrt{50} + \frac{40}{40}$							
		$r = \pm \frac{1377 - 1368}{1377 - 1368}$						
	$\frac{17.8^2}{17.8^2} + \frac{18.4^2}{18.4^2}$							
	$\sqrt{50} + 40$							
	$=\pm 2.339$ awrt ± 2.34							
	(Due tailed c.v. $ Z = 2.3263$ or CR: $Z \le -2.3263$ or $Z \ge 2.3263$	B1					
	1	n CR/Significant/Reject H ₀	dM1					
	S	Sufficient evidence to support that the mean <u>yield</u> from plants using fertiliser <u>A</u> is	A1ft					
	£	reater than the mean <u>yield</u> from plants using fertiliser <u>B</u>	(7)					
ALT		inding the CI can get R1M1M1A0R1M1A1 unless test statistic given	(7)					
		$\frac{D}{D} = \frac{D}{D} = \frac{D}$						
	8	ward M1 for $z = \pm \frac{17.8^2}{17.8^2}$ dep on first M1 where $2.3 \le z \le 2.4$						
		$\sqrt{\frac{210}{50} + \frac{101}{40}}$						
	1	May be implied by $ D = 8.949$						
(b)	I	Expected profit per plant						
	ŀ	$B: 3 \times 1.377 - \frac{75}{72}$ $B: 3 \times 1.368 - \frac{50}{12}$	M1					
		50 40	A 1					
		D. 12.03(1) $D. 12.03(4)$	dA1					
	(Claire should use fertiliser B	(3)					
		Notes	Total 10					
(a)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ if A and B not the letter must be defined	ised the					
	М1	For a correct attempt to find the se or se ² Condone slip in sample sizes May be implied by						
	NI I	se = awrt 3.85 or se ² = awrt 14.8. Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097	1502					
	M	For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18.4 rather th and 18. 4^2 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097	nan 17.8 ²					
	A1	awrt = ± 2.34 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097						
	B1	\pm 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test stat	istic					
		dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compati	ible with					
	dM	their test statistic and CV only – need not be contextual but do not allow contradicting non concernments	ntextual					
	110	ft their z value and CR only. A correct contextual statement compatible with their test statistic	and CV					
	AII	with context of yield (at least once) and A and B						
		NB id they give a <i>p</i> -value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1						
		A correct method to find the profit per n plants of m kg for either fertiliser A of fertiliser B)					
(b)	M1	$n\left(3\times1.377 - \frac{75}{50}\right) \text{ or } n\left(3\times1.368 - \frac{50}{40}\right) \text{ or } m\left(3 - \frac{75}{50}\times1.377\right) \text{ or } m\left(3 - \frac{50}{40}\times1.368\right)$	368))					
		where <i>n</i> and $m \neq 0$ Implied by one correct value for <i>A</i> or <i>B</i>						
		must have 2 values which can be compared. ie using same n or m . Profit per n plant £2.63(1)	<i>n</i> and					
	A1	$\pounds 2.85(4) n$ or profit per m kg awrt $\pounds 1.91 m$ and awrt $\pounds 2.09 m$ (2dp) or cost per m kg awrt $\pounds 1.0$)9 <i>m</i> and					
		Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits 105.24 and 114.16)	gain M1A1					
	dA1	dependent on 1^{st} A1 being awarded. For a correct statement.						

Question		Scheme	Marks					
6 (a)	$\left[\overline{x} = \frac{8}{2}\right]$	$\left[\frac{06.4}{36}\right] = 22.4$	B1					
	"22.4"	$\pm 2.3263 \times \frac{0.4}{\sqrt{36}}$	M1 B1					
	(22.24.	(22.24, 22.55) awrt (22.2, 22.6)						
	NB ans	swers which are awrt (22.2, 22.6) gain full marks						
			(4)					
(b)	[The C distrib	The Central Limit Theorem is not required as] the original population is normally Istributed B						
			(1)					
(c)	22.5 18	within the confidence interval	BIft					
	So no r	eason to doubt the manufacturers claim	dB1 ft (2)					
		$($ $($ $)^2)$	(2)					
(d)	$\overline{Y} \sim N$	$\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$	B1					
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$	M1					
		= 0.1038 (Calculator gives 0.10295) awrt $0.103 / 0.104$	A1					
			(3)					
ALT	N(8500	, 250)	B1					
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$	M1					
		= 0.1038	A1					
		Notes	Total 10					
(a)	B1	For 22.4						
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with 1.2 < z < 2.6						
	B1	For z value = 2.3263 or better seen (Calculator gives 2.3263479)						
	A1	awrt (22.2, 22.6) This does not imply the B1						
(b)	B1	For reference to the data is modelled by normal distribution						
(c)	B1 ft	t ft their CI For a comment on whether 22.5 (or it) is or is not in their CI allow eg range for CI Allow "22.24" < 22.5 < " 22.6" Answer must be compatible with their CI						
	dB1 ft	Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe						
(d)	B1	for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have \overline{Y} or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850, 2.$ used or N(8500, 250) seen or used. Both implied by a correct standardisation.	5)seen or					
	M1	For \pm (a correct standardisation) implied by a correct answer						
	A1	awrt 0.103 to 0.104						

Question		Scheme	Marks
7 (a)	Let $P = t$	ime to serve a customer at a standard checkout	
	$Q = P_1 +$	$P_2 + P_3 \qquad [Q \sim] N(720, 1200)$	B1
	-	(660 "720")	
	P(Q < 6)	$60) = P \left Z < \pm \frac{600 - 720}{\pi \sqrt{200}} \right \left[= P(Z < -1.732) \right]$	M1
		· ("√1200") ²	
	= 0.0418	B (Calculator gives 0.04163) <u>awrt 0.041 / 0.042</u>	A1
			(3)
ALT	for the B	1 M1	
	B1 for	$[O \sim] N(12, \frac{1}{2})$	
	M1 for	$P(Q < 11) = P \left Z < \pm \frac{11 - 12^{n}}{12^{n}} \right = P(Z < -1.732)$	
		$\sqrt{\frac{1}{3}}$	
(b)	Δεεμπρ	$\sqrt{\sqrt{3}}$	R1
(0)	Assume	the time taken to serve customers is independent	(1)
(c)	R = time	to serve a customer at an express checkout	(1)
	$S = (P_1 +$	$(-P_{0} + P_{0}) - (R_{1} + + R_{2})$ [S ~]N(20, 1648)	M1 A1
	~ (-1 -		
	P(S > 0)	$P = P \left[Z > \pm \frac{0 - 20}{2} \right] = P \left[Z > -0.492 \right]$	M1
		$\sqrt{(\sqrt{1648})^{L}}$	
	= 0.6879	O (Calculator gives 0.6888) awrt 0.688 / 0.689	A1
ALT	For the N	/1A1M1	
	M1 for 1	$N\left(\frac{1}{2}\right)$	
		(3,)	
	Δ1 for N	$\left(\frac{1}{1},\frac{103}{10}\right)$	
		(3'225)	
		$0 - \frac{1}{2}$	
	M1 for ±	$=\frac{1/3}{102/3}$	
		$\sqrt["]{103/225}$	
			(4)
		Notes	Total 8
(a)	B 1	For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in standardisation	
		For standardising using 660, their mean \neq 240 or 4 and their standard deviation \neq 20 or	$\frac{1}{2}$ If no
	M1	Tor standardising using ooo, afor mean / 210 or Fand their standard de transmit 20 or	3
		distribution given the mean and sd must be correct in the standardisation. Allow \pm star	nd
	Al	awrt 0.041 or awrt 0.042	
(b)	B1	A correct assumption. Must have context of customers or time and independence(allow	v random)
(c)	M1	For N(±20,) or N $\left(\frac{1}{3},\right)$ maybe awarded in standardisation	
	A1	For N(±20, 1648) or N $\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisation	
	M1	For standardising using 0 and mean of ± 20 or $\pm 1/3$ and their standard deviation. The	0 may be
		implied by having just the mean on the numerator Allow \pm stand	
	A1	awrt 0.688 to 0.689	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom